До Солнца - 150000000 километров. Это в 270000 раз ближе, чем до самой близкой, исключая само Солнце, звезды. Ясно, почему очень многое,
что известно о звездах, мы знаем благодаря нашему дневному светилу. Даже свет от ближайших звезд идет несколько лет, а сами звезды в самые мощные телескопы видны
как точки. Впрочем, это не совсем так: звёзды видны в виде крохотных дисков, но это связано с искажениями в телескопах, а не с увеличением. Звёзд бесчисленное
множество. Никто не в силах точно сказать, сколько существует звезд, тем более звёзды рождаются и умирают. Можно лишь приближенно заявить, что в нашей
Галактике около 150000000000 звёзд, а во Вселенной неизвестное число миллиардов галактик… А вот сколько
звёзд можно увидеть на небе невооруженным глазом известно точнее: около 4,5 тысяч. Более того, задавшись определенным пределом яркости звезд, близким по
доступности глазу, можно это число назвать точнее, чуть ли не до единиц. Яркие звезды давно посчитаны и занесены в каталоги. Яркость звезды (или, как говорят,
её блеск) характеризуется звездной величиной, которую астрономы давно умеют определять. Так что же такое звезды? Звезды - раскаленные газовые шары.
Температура поверхности звёзд различна. У некоторых звёзд она может достигать 30000 К, а у других - лишь 3000 К. Наше Солнце имеет поверхность с температурой около 6000 К.
К астрофизике относим проблемы 21–30, что в некоторых случаях весьма условно.
В частности, и даже в особенности, это относится к вопросу об экспериментальной проверке ОТО — общей теории относительности. Эффекты ОТО в пределах Солнечной
системы весьма малы. Именно поэтому проверка, с успехом начатая в 1919 году и продолжающая до сих пор, не приводит к точностям, к которым мы привыкли в атомной физике.
Для отклонения радиоволн Солнцем отношение наблюдаемой величины к вычисленной согласно ОТО составляет 0,99997 + 0,00016. Такое же отношение для поворота
перигелия Меркурия равно 1,000 + 0,001. В общем ОТО проверена в слабом гравитационном поле с погрешностью до сотой доли процента; при этом никаких
отклонений от ОТО не обнаружено. Особо стоит вопрос о проверке принципа эквивалентности; его справедливость подтверждена с точностью 10–12.
В астрофизике отклонение лучей в поле тяжести всё шире используется при наблюдении «линзирования», т.е. фокусировки электромагнитных волн под действием
гравитационного поля, в применении как к галактикам (они линзируют свет и радиоволны квазаров и других галактик), так и к звездам (микролинзирование более
удаленных звезд). Разумеется, речь при этом не идет о проверке ОТО (точность измерений сравнительно невелика), а об её использовании.
Когда-то наблюдать гравитационные линзы считалось практически невозможным. Однако в 1979 году было обнаружено линзирование одного из квазаров. В настоящее
время наблюдение линзирования и микролинзирования — довольно широко используемый астрономический метод. В частности, данные о линзировании позволяют определить
постоянную Хаббла.
По-настоящему актуальна проверка ОТО в сильных гравитационных полях — для
нейтронных звёзд и вблизи черных дыр и вообще для черных дыр. Так, недавно предложен метод проверки ОТО в сильном поле по колебаниям излучения в двойной
звезде, одна из компонент которой является нейтронной звездой. Хотя черные дыры и можно было вообразить себе в дорелятивистской физике, но по сути дела — это
замечательный релятивистский объект. Можно отметить, что их обнаружение подтверждает ОТО. Однако, насколько я себе представляю ситуацию, нельзя
утверждать, что известное о черных дырах подтверждает именно ОТО, а не некоторые отличающиеся от нее релятивистские теории гравитации.
Существенной проверкой ОТО является исследование двойных пульсаров. Оно показало, что потеря энергии двумя
движущимися нейтронными звездами, образующими двойную систему, находится в полном согласии с ОТО при учете гравитационного излучения (интенсивность
которого была вычислена Эйнштейном в 1918 году). Ни один квалифицированный физик не сомневается
в существовании гравитационных волн. Но имеется проблема (она фигурирует в списке под номером 22) — приём гравитационных волн, приходящих из космоса.
Задача технически очень сложна, для её решения строятся гигантские установки. Так, система LIGO (Laser interferometer gravitational-wave
observatory, США) состоит из двух далеко разнесенных «антенн» длиной 4 км каждая. В этой установке можно будет заметить происходящее под действием
приходящей гравитационной волны смещение зеркал на 10–16 см, а в дальнейшем и меньшие смещения. В ближайшие годы LIGO и аналогичные
установки, строящиеся в Европе и Японии, вступят в строй. Так будет положено начало гравитационно-волновой астрономии.
Замечу, что радиоастрономия родилась в 1931 году, а начала интенсивно развиваться после 1945 года. Галактическая рентгеновская астрономия возникла в
1962 году. Гамма-астрономия и нейтринная астрономия еще моложе. С развитием гравитационно-волновой астрономии будет освоен последний известный «канал», по
которому мы можем получать астрофизическую информацию. Как и в других случаях, весьма важны будут совместные (одновременные) измерения в различных «каналах».
Речь может идти, например, об исследовании образования сверхмассивных черных дыр совместно в нейтринном, гравитационно-волновом и гамма-«каналах».
Совокупность проблем, указанных в списке под номером 23, — это, пожалуй, самое главное в астрофизике. Сюда отнесена и космология. Несомненно,
космологическая проблема — великая проблема. Внимание она привлекала к себе всегда: ведь системы Птолемея и Коперника — это тоже космологические теории. В
рамках физики XX века космология в теоретическом плане создавалась в работах
Эйнштейна (1917 г.), Фридмана (1922 и 1924 гг.), Леметра (1927 г.) и затем
многих других. Но до конца 40-х годов все наблюдения, существенные с космологической точки зрения, велись в оптическом диапазоне. Поэтому открыт был
лишь закон красного смещения, и тем самым установлено расширение Метагалактики (работы Хаббла, которые датируются 1929 годом, хотя красное смещение наблюдалось
и ранее, и не только Хабблом). Энергичное развитие космологии началось только после того, как в 1965 году было открыто реликтовое тепловое радиоизлучение с
температурой около 2,7 Кельвина. В настоящее время именно измерения в радиодиапазоне играют наиболее важную роль среди наблюдений, имеющих космологическое значение.
Одной из основных, а может быть и главной, задачей в космологии является определение характера эволюции Вселенной. Важный результат, известный уже
довольно давно, заключается в том, что в эволюцию Вселенной вносит вклад не только «обычное» барионное вещество (и, конечно, электроны), но еще что-то, что
называют скрытой, или темной, массой (dark matter). Кроме этого, предполагается и влияние некоторой «вакуумной материи», называемой также «темной энергией».
Обращаясь к проблеме 24 (нейтронные звезды и пульсары, сверхновые), замечу, что гипотеза о существовании нейтронных звезд, насколько знаю, была высказана в
1934 году. Вначале казалось, что нейтронные звезды (характерный радиус 10 км, масса порядка массы Солнца) обнаружить почти невозможно. Сейчас даже одиночные
нейтронные звезды, не говоря уже о двойных звездах, изучаются в рентгеновских лучах. Однако ещё до этого в 1967–1968 годах было открыто радиоизлучение
нейтронных звезд — пульсаров.
Сейчас известно около 1000 пульсаров с периодом радиоимпульсов (это также период вращения звезды) от 1,56 x 10–3 с до 4,3 с. У миллисекундных
пульсаров магнитное поле (на поверхности) порядка 108–109 Э. У большинства пульсаров с периодом радиоимпульсов от 0,1 с до 1 с поле
порядка 1012 Э. Кстати, существование в природе столь сильных магнитных полей тоже важное открытие. В последнее время обнаружены нейтронные
звёзды с ещё более сильными полями (магнетары), достигающими по оценкам 1015–1016 Э(!).
Радиоизлучение эти магнетары не испускают, но наблюдаются в мягких гамма-лучах.
Чёрные дыры и особенно космические струны — еще значительно более экзотические объекты, чем нейтронные звезды. Космические струны (не следует, конечно, их
путать с суперструнами) — это некоторые (не единственно возможные) топологические «дефекты», могущие возникать при фазовых переходах в ранней
Вселенной. Они представляют собой нити, могущие быть замкнутыми (кольца) космических масштабов и с характерной толщиной порядка 10–29–10–30 см.
Космические струны еще не наблюдались, даже «кандидаты» на эту роль мне неизвестны. Поэтому я было включил космические струны в «список» рядом с черными
дырами, но поставил знак вопроса.
Совсем иначе дело обстоит с
чёрными дырами — они являются важнейшими астрономическими и физическими объектами. Несмотря на то что «схватить чёрную дыру за руку» очень трудно, в их
существовании и большой роли в космосе сегодня невозможно сомневаться. Любопытно, что черные дыры в некотором смысле были предсказаны еще в конце XVIII
века Митчеллом и Лапласом.
Наблюдаются, или, если быть очень осторожными, по всей вероятности, наблюдаются, черные дыры двух типов — со звездными массами меньше или порядка
100 масс Солнца и гигантские дыры в галактиках и квазарах с массами порядка (106–109) масс Солнца. Дыры со звездными массами
находят в основном в результате наблюдения двойных систем.
Вопрос об образовании галактик (проблема 26) составляет особую главу космологии. Её содержание в теоретическом плане состоит в анализе динамики
неоднородностей плотности и скорости вещества в расширяющейся Вселенной. В результате роста крупномасштабных неоднородностей вещества во Вселенной
появляются галактики и скопления галактик.
Теперь остановлюсь на вопросе о тёмной материи. По сути дела, это очень крупное и неожиданное открытие, история которого, насколько знаю, восходит к
1933 году. Количество светящейся материи определяется в результате наблюдений в основном в видимом свете. Полное же количество гравитирующей материи сказывается
на динамике — движении звезд в галактиках и галактик в скоплениях. Вне всяких сомнений, установлено, что во Вселенной имеется несветящаяся материя,
проявляющаяся в силу своего гравитационного взаимодействия.
Темная материя
распределена отнюдь не равномерно, но присутствует везде: и в галактиках, и в межгалактическом пространстве. Так возник один из важнейших и, я
бы сказал, острейших вопросов современной астрономии — какова природа темной материи, часто именовавшейся ранее также скрытой массой? Проще всего
предположить, что речь идет о нейтральном водороде, сильно ионизованном (и поэтому слабо светящемся) газе, планетах, слабо светящихся звездах — коричневых
карликах, нейтронных звездах или, наконец, черных дырах. Однако все эти предположения опровергаются наблюдениями разных типов.
Происхождение космических лучей (проблема 28), открытых в 1912 году, много лет оставалось загадочным. Но сейчас можно не сомневаться в том, что основными
их источниками являются сверхновые звезды. Наиболее интересной представляется проблема происхождения космических лучей со сверхвысокими энергиями,
превышающими 1016эВ.
Наивысшая наблюдавшаяся в космических лучах энергия составляет 3×1020 эВ.
Ускорить частицы (скажем, протон) до такой энергии нелегко, но, по-видимому, возможно, особенно в активных ядрах галактик. Однако есть ряд трудностей,
которые не позволяют удовлетворительно ответить на вопросы о происхождении космических лучей с самой высокой энергией. Проблема действительно загадочна и
уже поэтому интересна.
Перейдем к проблеме 29 — к гамма-всплескам. В конце 60-х годов в США была запущена система спутников Вела (Vela), оснащенных приборами, могущими
регистрировать мягкие гамма-лучи и предназначенные для контроля над соглашением, запрещающим атомные взрывы в атмосфере. Взрывы не производились, но были
зафиксированы гамма-всплески неизвестного происхождения. Их типичные энергия (0,1–1) МэВ и длительность — секунды. Об этом открытии было сообщено лишь в 1973
году. Гамма-всплески с тех пор энергично изучались, но их природа долгое время оставалась неясной. Сейчас можно констатировать, что гамма-всплески — следствие
мощнейших взрывных явлений, наблюдаемых во Вселенной, не считая, конечно, самого Большого взрыва (Big Bang).
Речь идет об энерговыделении до примерно 1051 эрг
только в гамма-диапазоне. Это существенно больше, чем оптическое излучение при взрывах сверхновых. Поэтому некоторые источники гамма-всплесков называли
гиперновыми. Кандидаты на роль таких «источников»: слияние двух нейтронных звезд, какое-то столкновение или слияние массивной звезды с нейтронной и т.п.
Осталось обсудить последнюю, 30-ю проблему «списка» — нейтринную физику и астрономию. Напомню, что гипотеза о существовании нейтрино была высказана Паули
в 1930 году. Длительное время считалось, что детектировать нейтрино практически невозможно. Вопрос о массе нейтрино возникал, вероятно, с самого начала, но было
ясно, что масса, например, электронного нейтрино если и отлична от нуля, то очень мала по сравнению с массой электрона. Так или иначе, вопрос о массе
нейтрино остается актуальным.
Солнце и звёзды, как известно, излучают за счет происходящих в их недрах ядерных реакций и, следовательно, должны испускать нейтрино. Такие нейтрино,
имеющие энергию около 10 МэВ, могут в настоящее время регистрироваться лишь от Солнца. Еще несколько лет назад считалось, что измеряемый поток нейтрино от
Солнца существенно меньше вычисленного. Но сейчас построены и начали эксплуатироваться несколько совершенных установок для детектирования солнечных
нейтрино с различными энергиями. Результаты наблюдений самых последних лет позволяют утверждать, что проблема солнечных нейтрино в основном решена.
Нейтринная астрономия — это не только солнечная астрономия. Сейчас ведется
мониторинг, и если нам повезет и вблизи Солнца (в Галактике или в Магеллановых Облаках) вспыхнет еще одна сверхновая, то будет получен богатый материал
(сверхновые в Галактике вспыхивают в среднем примерно раз в 30 лет, но эта цифра неточна, и, главное, вспышка может произойти в любой момент). Особо нужно
упомянуть задачу детектирования реликтовых нейтрино с малыми энергиями, быть может вносящими вклад в темную материю. Наконец, буквально «на выходе» находится
нейтринная астрономия высоких энергий с энергиями нейтрино, превышающими 1012 эВ. Наиболее вероятные источники: ядра галактик, слияние нейтронных звёзд,
космические топологические «дефекты».