Волна интереса к судьбе телескопа, поднятая решением руководства НАСА об отказе от очередной ремонтной экспедиции к телескопу, набирает обороты. Как
только стало известно о нелепом решении НАСА, в институт телескопа Хаббла (Space Telescope Science Institute, STScI) электронные протесты стали поступать
сотнями. Неподдельный интерес мыслящей общественности к судьбе научного инструмента, да еще в наши годы, да еще в Америке — явление уникальное. Чтобы
его заслужить, нужны не просто фундаментальные открытия — нужен вклад, который научный прибор внес в формирование мировоззрения многих тысяч, а может,
миллионов и миллиардов людей нашей эпохи. Уже давно и Америка, и весь мир не сталкивались ни с чем подобным.
Орбитальный телескоп Spitzer
Две работы Гарвард-Смитсоновского центра астрофизики и космического центра Годдарда открывают новую главу в астрономии – непосредственное измерение параметров далёких планет и их сравнение между собой.
Две независимые команды астрономов, одна во главе с Дрейком Демингом (Drake Deming) из космического центра Годдарда (Goddard Space Flight Center), а вторая
– во главе с Дэвидом Шарбонно (David Charbonneau) из Гарвард-Смитсоновского центра астрофизики (Harvard-Smithsonian Center for Astrophysics) впервые
"захватили" тепловое излучение от планет, вращающихся около других звёзд. Обе группы использовали данные инфракрасного орбитального телескопа Spitzer и
одинаковую технику вычисления излучения этих планет.
Подробно:
Это интересно знать
Космические телескопы
Космический телескоп GALEX – новое окно во Вселенную
Космический телескоп «Галекс» - Galaxy Evolution Explorer (GALEX) был запущен 28
апреля 2003 года. Эта миссия направлена на изучение формы, яркости, размера и расстояния до галактик за 10 миллиардов лет космической истории.
50-сантиметровое главное зеркало телескопа создано для сканирования неба в поисках источников ультрафиолетового излучения. Имеются телескопы, изучающие
небо в видимом, рентгеновском и гамма диапазоне, и вот теперь у ученых есть космический телескоп, который позволяет получить ультрафиолетовую картинку неба.
Это очень важный момент, поскольку небо очень плохо изучено в ультрафиолете и работа с этим телескопом уже приносит сенсационные известия об эволюции
Вселенной. Диапазон ультрафиолетового излучения находится на электромагнитном спектре излучений на частотах между видимым светом и диапазоном рентгеновских и
гамма-лучей. Ультрафиолетовая часть электромагнитного диапазона трудно наблюдаема сквозь атмосферу Земли, а Galaxy Evolution Explorer, находясь за
пределами атмосферы, может наблюдать ультрафиолетовое излучение далеких объектов Вселенной без помех.
Проект «Галекс» разработан Калифорнийским Институтом Технологии в Пасадене, USA, который является также ответственным за эксперименты и анализ данных.
Лаборатория Реактивного Движения NASA обеспечила телескоп научным оборудованием. В проекте участвовали Южная Корея и Франция - международные партнеры в миссии.
Миссия «Галекс» имеет две основные цели: изучение образования и жизни звезд во Вселенной и изучение галактик в ультрафиолетовом диапазоне. Эволюция звезд: «Галекс»
исследует, как звездообразование в галактиках происходило в ранней Вселенной и как оно происходит сейчас. Ученые надеются, что узнают ответы на вопросы об
эволюции звезд и галактик во Вселенной. Изучение галактик в ультрафиолетовом диапазоне: «Галекс» проведет первые большие исследования галактик в этом
диапазоне. Это изучение поможет узнать, насколько сегодняшние галактики отличаются от галактик в ранней Вселенной.
Для того, чтобы достичь каждой из этих целей «Галекс» воспользуется тремя основными физическими факторами Вселенной: скорость света, распределение
галактик, и расширение Вселенной. Скорость света не бесконечна, поэтому мы видим отдаленные галактики такими, какими они были миллионы лет тому назад, когда они
послали в пространство первый свет. И этот свет только теперь достиг нас. Астрономы сравнивают отдаленные и близкие галактики и изучают различие между
ними. Распределение галактик во Вселенной равномерно во всех направлениях. Это принимает «Галекс», чтобы выполнить сравнение современных галактик с галактиками
в ранней Вселенной. Наблюдая галактики в ультрафиолете «Галекс» позволяет сделать их сравнение с другими. Это делается с помощью инструментов,
чувствительных к видимому и инфракрасному излучению.
Телескоп «Галекс» похож на космический телескоп «Хаббл», но только собирающая способность (светосила) «Галекса» в 20 раз меньше, чем у «Хаббла». Пока
«Хаббл» рассматривает небо в узкой области (с малым полем зрения), телескоп же «Галекс» может рассмотреть сотни галактик при каждом наблюдении. Он имеет большое поле
зрения, а не высокое разрешение, для того, чтобы эффективно выполнять исследования (см. изображение слева). За один раз «Галекс» охватывает область
неба диаметром 1,2 градуса. Это - два угловых диаметра полной Луны.
Телескоп снабжен двумя зеркалами: первичное (M1) и вторичное зеркало (M2). M1 - 50 сантиметров в диаметре и M2 - 22 сантиметра в диаметре. Эти зеркала
изготовлены из улучшенного металлического сплава. Свет от объекта на небе входит в телескоп и отражается от первичного зеркала к вторичному зеркалу. Вторичное
зеркало затем отражает свет обратно сквозь отверстие в центре первичного зеркала, чтобы попасть в фокус, где находится фокусирующий прибор BFA.
Такая система телескопа называется "Ричи-Кретьен" по имени инженеров, которые впервые разработали и использовали зеркала с параболическими поверхностями.
Крышка телескопа, подобно крышке в Вашей фотокамере, защищает телескоп во время испытаний и запуска. Когда телескоп благополучно достиг нужной орбиты вокруг
Земли, ему была подана команда, чтобы открыть крышку, и «Галекс» начал собирать ультрафиолетовый свет неба. Телескоп и детекторы могут хорошо работать только
при стабильной температуре. Для этого используются терморезисторы и элементы нагрева, установленные в телескопе и инструментах. Терморезисторы использованы в
качестве термометров. Они измеряют температуру частей телескопа и передают информацию на компьютер. Компьютером даются команды на включение элементов
нагрева, если это необходимо. Элементы нагрева поддерживают оптику телескопа в заданном диапазоне температур между 0 и 27 градусами Цельсиями. Во время запуска
и на орбите телескоп может собрать немного загрязняющих веществ, которые снизят эффективность оптики. Нагреватели могут использоваться, чтобы нагреть зеркала и
удалить загрязнения. Большое поле зрения телескопа позволит астрономам наблюдать все небо и изучать сотни тысяч галактик в течение 29-месячной миссии.
Итак, свет от небесных объектов, собранный телескопом, направляется к ультрафиолетовым чувствительным детекторам, используя комбинацию зеркал и
фокусирующий прибор BFA. Затем принятое излучение обрабатывается в инструменте OWA. Здесь принятый свет проходит "лучевую обработку", которая разделяет
ультрафиолетовое излучение на различные частоты. Затем к работе приступает компьютер, который и создает окончательные изображения неба и посылает их для
дальнейшей обработки в земные лаборатории.
OWA - круглая пластина 43 сантиметра в диаметре. У неё есть два круглых отверстия для приема излучения. Пластина вращается двумя двигателями, чтобы
установить под принятый свет тот или иной прибор регистрации излучения. С помощью этих приборов может быть получено обычное изображение и изображение
спектра изучаемого объекта. Двигатели OWA также управляются компьютером по сигналам с датчиков. Двигатель может вращать пластину OWA на очень маленькие
углы. Это позволяет получать спектры звезд, которые расположены близко друг к другу. OWA позволяет скомпенсировать смещение телескопа в пространстве при
наведении на объект. «Галекс» снабжен двумя антеннами для связи с Землей, чтобы передавать полученную информацию в научные лаборатории.
Орбитальные телескопы ближайшего будущего
В настоящее время космические агентства США и Европы работают над созданием нового космического телескопа, который заступит на космическую вахту вместо в
любом случае не вечного телескопа Хаббла. В создании нового телескопа будут использованы новейшие технологии и разработки. Во многом изменится и круг
стоящих перед телескопом задач — одной из них станет, например, проверка и уточнение шкалы астрономических расстояний. Новый телескоп уже получил имя
Джеймса Вебба (James Webb Space Telescope, JWST). Предполагается, что он сможет приступить к работе уже в 2011 году.
Новый телескоп будет оснащен главным зеркалом диаметром 6,5 метра; тем самым он будет собирать в семь раз больше света, чем телескоп «Хаббл». Монолитное
зеркало такого диаметра и веса вывести на орбиту пока что не представляется возможным, поэтому решено произвести его окончательную сборку уже в космосе.
Составное зеркало будет выглядеть подобно цветку — центральный сегмент размером 2 на 6,5 метра, а также два двухметровых раскладывающихся «крыла».
Телескоп будет расположен в космическом пространстве в так называемой «точке
Лагранжа», или в точке либрации системы Земля — Солнце, на расстоянии 1,5 млн. км от Земли. Закрывать телескоп от солнечного излучения будет огромный экран
размером с теннисный корт. Он позволит снизить температуру телескопа до минус 223 градусов Цельсия, при которой можно обеспечить наиболее эффективную работу
датчиков инфракрасного излучения. Правда, о техническом обслуживании телескопа на таком удалении от Земли даже мечтать пока что не приходится.
Помещение телескопа в точку Лагранжа не случайно. Несмотря на то что на достижение ее потребуется шесть месяцев, нахождение телескопа в 1,5 млн км от
Земли вполне оправданно. По мнению ученых, это обеспечивает непрерывные наблюдения нужного участка неба. Кроме того, как заявляют разработчики, в случае
необходимости срочной переориентации телескопа (например, если где-то вспыхнет сверхновая) телескоп можно будет переориентировать на новую цель всего за двое суток.
Основных целей плановых наблюдений, ставящихся перед телескопом Джеймса
Вебба, четыре: это поиски первых объектов, сформировавшихся после Большого взрыва, и попытка продвинуться ещё дальше в наблюдении ранней Вселенной,
изучение рождения звезд и протопланетных систем, изучение скоплений галактик и внесолнечных планетных систем и, возможно, жизни на них. По крайней мере
планируется активный поиск планет, находящихся в тех же условиях, что и Земля, на которых возможно существование жидкой воды.
Но, несмотря на поразительные открытия, которые, без сомнения, будут совершены с помощью космических телескопов будущего, им вряд ли удастся затмить
славу уникального по эффективности космического телескопа Хаббла, как и самых первых телескопов Галилея. Хаббл продолжает работать на орбите. Поток удивительных данных не иссякает.