Главная В избранное Контакты News О проекте Планы сайта Карта
счетчик сайта
Размер шрифта:

Кратко:

Самая яркая галактика на небе - Большое Магелланово Облако (БМО)

Большое Магелланово Облако

Оно находится в созвездии Золотой Рыбы и в северных широтах наблюдаться не может. Как БМО, так и Малое Магелланово Облако (ММО). которое занимает по яркости второе место, выглядят как отдельные части Млечного Пути. Интегральная визуальная звездная величина БМО и ММО составляет соответственно 0 и 2. Эти две небольших галактики являются спутниками Млечного Пути и считаются самыми близкими к Солнечной системе галактиками (после карликовой галактики в Стрельце). Однако яркость карлика в Стрельце нельзя определить, так как эта галактика находится в процессе слияния с нашей Галактикой и её звёзды нельзя отличить от множества других звёзд в пределах Млечного Пути.

ПОСТОЯННАЯ ХАББЛА:

Коэффициент пропорциональности в законе Хаббла, который описывает скорость расширения Вселенной. Из-за неточности определения масштабов внегалактических расстояний оценить величину постоянной Хаббла нелегко, но все более и более точные измерения, проведенные многими исследователями с использованием разнообразных методов, дают её оценку в диапазоне 60-80 км/сек/Мпс. В ходе эволюции Вселенной значение постоянной Хаббла меняется со временем, т.е. она не является постоянной в буквальном смысле этого слова. Поэтому некоторые предпочитают называть её параметром Хаббла. Обратной к ней величиной является время Хаббла.

Парсек 3,0857х1016м - 3,2616св.лет

 

    

    

 

 

ВСЕЛЕННАЯ

Судьба Вселенной


«Судьба существа зависит от судьбы Вселенной.
Поэтому    разумное    существо    должно
проникнуться    историей    Вселенной.
Необходима такая высшая точка зрения.»

К.Э. Циолковский.

Космологические модели приводят к выводу, что судьба расширяющейся Вселенной зависит только от средней плотности заполняющего её вещества и от значения постоянной Хаббла. Если средняя плотность равна или ниже некоторой критической плотности, расширение Вселенной будет продолжаться вечно. Если же плотность окажется выше критической, то расширение рано или поздно остановится и сменится сжатием. В этом случае Вселенная сузится до размеров, которые у неё были предположительно при возникновении, уступив место явлению, названному Большим сжатием. Чему же равна эта таинственная критическая плотность мира? Оказалось, что значение её определяется только современным значением постоянной Хаббла и составляет ничтожную величину - около 10-29 г/см3, или 1015 атомных единиц массы в каждом кубическом сантиметре. При такой плотности грамм вещества содержится в кубе со стороной около 40 тыс. километров! Определить точно постоянную Хаббла непросто. Галактики могут иметь довольно высокие случайные скорости (до 1000-2000 км/с), никак не связанные с космологическим расширением. Чтобы вычислить постоянную Хаббла, приходится измерять красные смещения не близких, а достаточно далёких галактик, расстояния до которых установить очень трудно. По современным оценкам, наиболее вероятное значение постоянной Хаббла лежит в интервале 60-80 км/(с·Мпк). Определить из наблюдений истинную среднюю плотность материи Вселенной, оказывается, ещё сложнее, чем найти постоянную Хаббла и вычислить критическую плотность. Из астрономических наблюдений следует, что средняя плотность всего видимого вещества - звёзд, пыли и межзвёздного газа - не превышает 10% от критической плотности. Однако помимо наблюдаемого вещества во Вселенной, безусловно, присутствует и загадочное невидимое, или тёмное вещество, ничем не проявляющее себя, кроме гравитационного поля. Измерить плотность тёмного вещества - задача чрезвычайно сложная. Многие теоретические соображения заставляют думать, что плотность Вселенной с учётом тёмного вещества должна быть равна критической или немного ниже её. Этот важнейший космологический вопрос до сих пор остаётся открытым.

Итак, перечислим основные модели Вселенной:

Модель де Ситтера: Модель расширяющейся Вселенной, предложенная в 1917 г., в которой не существует вещества или излучения. Эта нереалистичная гипотеза имела, тем не менее, исторически важное значение, поскольку в ней впервые выдвигалась идея о расширяющейся, а не статичной Вселенной.

Модель Леметра: Модель вселенной, которая начинается с Большого взрыва, сменяющегося затем статической фазой и последующим бесконечным расширением. Модель названа по имени Дж. Леметра (1894-1966), который в 1927 г. опубликовал работу по расширению Вселенной. Он первым предложил рассматривать процесс расширения Вселенной от состояния "первичного атома", в то время как Эйнштейн всё ещё был сторонником теории статической Вселенной.

Модель Милна: Модель расширяющейся Вселенной без использования общей теории относительности, предложенная в 1948 г. Эдвардом Милном (Edward Milne). Это расширяющаяся, изотропная и однородная Вселенная. не содержащая вещества. Она имеет отрицательную кривизну и незамкнута.

Модель Фридмана: Модель Вселенной, которая может коллапсировать внутрь себя. В 1922 г. советский математик А. А. Фридман (Alexander Friedmann, 1888-1925), анализируя уравнения общей теории относительности Альберта Эйнштейна, пришёл к выводу, что Вселенная не может находиться в стационарном состоянии — она должна либо расширяться, либо пульсировать. Сначала эта работа (1922 и 1924 гг.) была полностью проигнорирована, но позже на неё обратили внимание в связи с моделью Вселенной Леметра. Вселенная Фридмана может быть замкнутой, если плотность вещества в ней достаточно велика, чтобы остановить расширение. Этот факт привёл к поиску так называемой недостающей массы. В дальнейшем выводы Фридмана получили подтверждение в астрономических наблюдениях, обнаруживших в спектрах галактик так называемое красное смещение спектральных линий, что соответствует взаимному удалению этих звездных систем.

Модель Эйнштейна-де Ситтера: Самая простая из современных космологических моделей, в которой Вселенная имеет нулевое давление, нулевую кривизну (т.е. плоскую геометрию) и бесконечную протяженность, а её расширение не ограничено в пространстве и во времени. Предложенная в 1932 г., эта модель является частным случаем (при нулевой кривизне) более общей вселенной Фридмана.

Итак - Вселенная расширяется! К этому выводу пришел американский астроном Эдвин Хаббл, повторивший эксперименты предшественников на существенно более обширном наблюдательном материале. В 1929 году он сообщил, что не только установил систематическое красное смещение спектральных линий галактик, но и определил закон, по которому скорости удаления галактик от нас возрастают по мере увеличения расстояния. Тем самым было доказано, что в мире галактик существует свой Гольфстрим, который разносит их по космическому пространству. Но почему этот факт означает нестационарность Вселенной? Ответ на этот вопрос подразумевает два уровня погружения в суть рассматриваемой проблемы. Первый - наиболее "простой", основывается на современных представлениях о природе тяготения, пространства и времени. Второй - более сложный, затрагивает первопричины нестационарности Вселенной, скорее отвечая на вопрос не столько как, сколько почему вообще Вселенная расширяется. Оба этих уровня принципиально важны для понимания проблемы, уходящей своими корнями к философским воззрениям Аристотеля, Птолемея, Ньютона, Лейбница и Эйнштейна. Применительно к астрономии предсказания современной физики предельно лаконичны - в масштабах в десятки и сотни мегапарсек лишь одно из известных в природе взаимодействий - гравитационное - может определять характер движения небесных тел в космическом пространстве. Более того, следуя предсказаниям ОТО, можно утверждать, что именно гравитация материи приводит к искривлению пространства и времени, на фоне которого "пробные частички" - галактики движутся по инерции, своими траекториями лишь очерчивая отклонения свойств пространства и времени от свойств ньютоновского абсолютного пространства. Тот факт, что галактики разбегаются означает, что изменяются свойства пространственно-временного континуума, идет процесс его расширения, проявляющийся в хаббловском потоке галактик. Более того, в подтверждение этого тезиса можно выбрать в качестве меток кривизны и расширения пространства-времени не только галактики, но и их скопления - гигантские комплексы, насчитывающие от нескольких до десятков тысяч галактик. Эти скопления как целое движутся в хаббловском потоке с тем же законом увеличения скорости по мере увеличения расстояния до них - расширение Вселенной проявляет себя одинаковым образом для любых "пробных частиц", независимо от их массы!

>>>Читайте дальше: Открытие реликтового излучения.

Структура Вселенной Судьба Вселенной Реликтовое излучениеАнизотропия реликтового излученияАнизотропия как индикатор ранней Вселенной Изотропна ли Вселенная? Масштабы Вселенной Сколь велика Вселенная? Открытие сотовой структуры Вселенной Альтернативная точка зрения на структуру Вселенной Циклические модели Вселенной Многолистная модель Вселенной Горячая пульсирующая Вселенная

 
 
Главная В закладки Контакты Новости О проекте Планы сайта

open
© KV


 


 

Видимое удаление галактик при доплеровской интерпретации красного смещения - это не единственное доказательство Большого Взрыва. Независимым и очень убедительным подтверждением служит чернотельное фоновое космическое излучение - постоянный слабый фон радиоволн, приходящих к нам из космоса со всех сторон.

Интенсивность этого фона в точности такова, какой следует ожидать в нашу эпоху от заметно ослабшего излучения Большого Взрыва.

Карл Саган, "Космос".

Закрыть урок