Кратко:

Измерена скорость движения Солнца

Микроволново́е фоновое излучение как "новый эфир". М. ф. и. изотропно лишь в системе координат, связанной с "разбега́ющимися" галактиками, в т.н. сопутствующей системе отсчёта (эта система расширяется вместе со Вселенной). В любой другой системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с М. ф. и. Действительно, в силу Доплера, эффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с М. ф. и., их энергии равны. Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена: в направлении на созвездие Льва температура М. ф. и. на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно М. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно М. ф. и. Она составляет 600 км/с.

Лит-ра: Зельдович Я.Б., "Горячая" модель Вселенной, УФН, 1966, т.89, в.4, с.647; Вайнберг С., Первые три минуты, пер. с англ., М., 1981

КРАТКО О ГАЛАКТИКАХ:

Сверхскопление галактик - диаметр 40 мегапарсек, число галактик 10000. Центр местного сверхскопления находится в направлении созвездия Девы на расстоянии 12 мегапарсек. Из 50 известных сверхскоплений ближайшие находятся в созвездиях Льва (расстояние 87 мегапарсек) и Геркулеса (расстояние 100 мегапарсек).

Скопление галактик - диаметр 5 мегапарсек, число галактик 100-500 (скопление в созвездии Девы 2500). Ближайшие скопления галактик находятся в созвездиях Пегаса и Рыб (расстояние 65 мегапарсек).

Группа галактик - диаметр 1 мегапарсек, число галактик 5-30. Местную группу галактик (диаметр 2 мегапарсека) образуют две гипергала́ктики, внутри которых находятся гигантские галактики: Галактика и туманность Андромеды, окруженные 27 карликовыми галактиками. 4 ближайшие группы находятся на расстоянии 2-4 мегапарсека.

Парсек равен 3,0857х1016м - 3,2616 св.лет

Читайте подробно: о галактиках на Знания-сила

 

Подробно:

Вселенная

Анизотропия реликтового излучения


Температура реликтового излучения

Температура реликтового излучения является лишь одним из его параметров, описывающих раннюю Вселенную. В сво́йствах этого излучения сохранились и другие явные следы очень ранней эпохи эволюции нашего мира. Астрофизики находят эти следы, анализируя спектральную и пространственную неоднородность (анизотропию) реликтового излучения.

температура реликтового излучения
Температура реликтового излучения

Согласно теории горячей Вселенной, по прошествии примерно 300 тыс. лет после начала расширения температура вещества и связанного с ним излучения уменьшилась до 4000K. При этой температуре фотоны уже не могли ионизовать атомы водорода и гелия. Поэтому в ту эпоху, соответствующую красному смещению z = 1400, произошла рекомбинация горячей плазмы, в результате которой плазма превратилась в нейтральный газ. В тот период ещё никаких галактик и звёзд не было. Они возникли значительно позже. Став нейтральным, заполняющий Вселенную газ оказался практически прозрачным для реликтового излучения (хотя в ту эпоху это были не радиово́лны, а свет видимого и близкого инфракрасного диапазонов). Поэтому древнее излучение почти беспрепятственно доходит до нас из глубин пространства и времени. Но всё же по пути оно испытывает некоторые влияния и как археологический памятник несёт на себе следы исторических событий.

Например, в эпоху рекомбинации атомы испускали много фотонов с энергией порядка 10 эВ, что в десятки раз превышает среднюю энергию фотонов равновесного излучения той эпохи (при T = 4000K таких энергичных фотонов крайне мало, порядка одной миллиардной доли от их общего числа). Поэтому рекомбинационное излучение должно было бы сильно исказить планковский спектр реликтового излучения в диапазоне длин волн около 250 мкм. Правда, расчеты показали, что сильное взаимодействие излучения с веществом приведёт к тому, что выделившаяся энергия в основном «рассосется» по широкой области спектра и не сильно его исказит, но будущие точные измерения смогут заметить и это искажение. А значительно позже, в эпоху формирования галактик и первого поколения звезд (при z ~ 10), когда огромная масса уже почти остывшего вещества вновь испытала значительный нагрев, спектр реликтового излучения вновь мог измениться, поскольку, рассеиваясь на горячих электронах, низкоэнергичные фотоны увеличивают свою энергию (так называемый «обратный эффект Комптона»). Оба описанные выше эффекта искажают спектр реликтового излучения в его коротковолново́й области, которая пока наименее исследована. Хотя в нашу эпоху большая часть обычного вещества плотно упакована в звёздах, а звёзды - в галактиках, всё же и вблизи нас реликтовое излучение может испытать заметное искажение спектра в том случае, если его лучи по пути к Земле проходят сквозь крупное скопление галактик. Обычно такие скопления заполнены разрежё́нным, но очень горячим межгалактическим газом, имеющим температуру около 100 млн Кельвинов. Рассеиваясь на быстрых электронах этого газа, низкоэнергичные фотоны увеличивают свою энергию и переходят из низкочастотной, рэлей-джинсовской области спектра в высокочастотную, виновскую область. Этот эффект был предсказан Р.А. Сюняевым и Я.Б. Зельдовичем и обнаружен радиоастроно́мами в направлении многих скоплений галактик в виде понижения температуры излучения в рэлей-джинсовской области спектра на 1–3 мК.

Эпоха рекомбинации

Эффект Сюняева – Зельдовича был открыт первым среди эффектов, создающих анизотропию реликтового излучения. Сравнение его величины с рентгеновской светимостью скоплений галактик позволило независимо определить постоянную Хаббла (H = 60 ± 12 км/с/Мпк).

Вернемся к эпохе рекомбинации. В возрасте менее 300000 лет Вселенная представляла собой почти однородную плазму, содрога́вшуюся от звуковых, а точнее – инфразвуковы́х волн. Расчеты космологов говорят, что эти волны сжатия и расширения вещества генерировали в непрозрачной плазме также колебания плотности излучения, и поэтому ныне они должны обнаруживаться в виде чуть заметной «зыби» в почти однородном реликтовом излучении. Поэтому сегодня оно должно приходить на Землю с разных сторон с чуть разной интенсивностью. В данном случае речь идёт не о тривиальной дипо́льной анизотропии, вызванной движением наблюдателя, а о вариациях интенсивности, действительно присущих самому излучению. Их амплитуда должна быть очень мала: примерно одна стотысячная доля само́й температуры излучения, т.е. порядка 0,00003K. Первые попытки определить величины этих малых флуктуаций в зависимости от направления на небе были сделаны сразу после открытия самого́ реликтового излучения в 1965 году. Позже они не прекращались, но открытие состоялось лишь в 1992 году с помощью аппаратуры, вынесенной за пределы Земли. В нашей стране такие измерения были проведены в эксперименте «Реликт», но более уверенно эти малые флуктуации были зарегистрированы с американского спутника COBE (см. рис. Температура реликтового излучения).

↻Назад Читайте дальше: Анизотропия реликтового излучения как индикатор ранней Вселенной

Регулировки чтения: ↵ что это   ?  

Чтение голосом будет работать во всех современных Десктопных браузерах.

1.1
1.0

Поделиться в соцсетях: