Погубит ли адронный коллайдер Землю? Фундаментальные взаимодействия.
Интересно знать:

Слабые взаимо­действия

Одно из фундаментальных взаимо­действий было названо слабым из-за малости его константы по сравнению с константой сильного взаимодействия. Название «слабое» не означает «малосущественное». Например, константа слабого взаимодействия в 1033 раз больше константы гравитационного, которое тем не менее определяет структуру и эволюцию Вселенной. Точно так же слабое взаимо­действие играет важную роль во многих явлениях косми­ческого масштаба. Без него погасли бы Солнце и большинство звёзд: главным источником их энергии служат реакции превращения протона в нейтрон, позитрон и нейтрино с последующим образованием гелия 4Не. С процессами слабого взаимодействия в большей степени связаны потери энергии при взрывах сверхновых с образованием пульсаров (нейтронных звёзд). Слабые взаимо­действия превращают заряженные лептоны в нейтрино, а кварки одного типа (аромата) — в кварки других типов.

Исторически первым примером слабого взаимодействия явился радиоактивный распад (так называемый бета-распад) тяжёлых ядер, в результате которого получалось ядро с зарядом, на единицу большим, и вылетал электрон. В 1899 г. Резерфорд открыл бета-лучи (электроны, испускаемые радиоактивными источниками).

 

Подробно:

Физика ядра и элементарных частиц

Погубит ли адронный коллайдер Землю?
(часть 2)

© Dave Goldberg, Jeff Blomquist.


продолжение, часть 2 из 6
см. часть 1 часть 3 часть 4 часть 5 часть 6.

Можно ли считать БАК очередным важным шагом к полному пониманию природы Вселенной или мы, подобно Икару, подлетаем слишком близко к Солнцу?
Ждёт ли нас возмездие за дерзкую жажду к знаниям?

II. Как открывают
субатомные частицы?

Если столкнуть друг с другом энергичные протоны, получатся частицы, куда более массивные, чем исходные. Но если частицы, которые создаются в ускорителях, так массивны, зачем вообще нужны ускорители? Наверное, великанские частицы легко заметить и так?

И да и нет. Конечно, если бы в пространстве там и сям плавали массивные частицы, их можно было бы собирать и исследовать безо всякого труда. Беда в том, что всё во Вселенной стремится сбросить энергию до минимально возможной. Положите на стол мяч для боулинга — в этой позиции у него будет довольно много энергии — и легонечко подтолкните его. Он упадет со стола к вам на ногу — где энергии у него будет гораздо меньше. Поскольку энергия и масса эквивалентны, это означает, что массивная частица распадется, если это вообще возможно, на менее массивную и ещё что-нибудь — и очень скоро.

Самые массивные частицы живут всего миллионную долю секунды или даже меньше, а потом распадаются на более легкие, и так будет продолжаться предположительно 13,7 миллиарда лет — с начала времён и до тех пор, когда все массивные частицы раз и навсегда распадутся.

По Вселенной так и шныряют высоко­энергичные заряженные частицы. Протоны на высоких скоростях испускает и Солнце, и другие звезды в разных частях галактики, и сверхновые, — все места, где есть высокоэнергичные источники. Эти заряженные частицы, которые называются космическими лучами, летают туда-сюда, пока на что-нибудь не наткнутся. Если бы не магнитное поле, окружающее нашу планету, этим «чем-нибудь» могли бы быть ваши клетки — и тогда космические лучи убили бы вас. Вот почему нужно не проводить в открытом космосе слишком много времени. Достаточно часто космические лучи попадают в атмосферу и сталкиваются с кислородом или азотом, превращаясь в процессе в более массивные частицы. Стратосфера и всё, что выше, кишат мюонами, каонами и пионами.

Эти частицы рождаются и умирают в мгновение ока (строго говоря, за время, которое уходит у вас на это самое мгновение ока, полноценную насыщенную жизнь проживают примерно сто миллионов пионов), поэтому создать их и измерить можно только и исключительно внутри ускорителя. Если мы столкнем частицы друг с другом при достаточно высокой энергии, а затем сошлемся на закон Е=mc²… вуаля! Массивные частицы у нас в кармане. Если мы будем получать их в ускорителях, то нам будет проще предсказывать, когда они появляются, а значит, легче и изучать их.

Однако пионы и мюоны — не единственные массивные частицы, которые страдают от дегенеративных тенденций. Как мы уже упоминали, распаду подвержен даже нейтрон (эта черта отличает его от протона). Если вы дадите нейтрону около 10 минут, он распадется на протон, электрон (а значит, сохранится общий заряд) и ещё одну частицу, — она называется антинейтрино.

III. Зачем разным частицам
так много разных правил?

Сейчас, когда мы установили несколько основных законов, общих для всех фундаментальных сил, настала пора поговорить об играх, начиная с самых простых и очевидных.

Гравитация

Просим заметить, что люди, само собой, знали о существовании гравитации задолго до того, как сэр Исаак Ньютон «открыл» её в 1687 году. Например, к тому времени уже давным-давно умели строить катапульты. И прекрасно понимали, что если пустить стрелу вверх, то она впоследствии пробьет доспехи — хорошо бы на другой стороне поля. Без гравитации обслуживающему персоналу гильотины пришлось бы сидеть и дожидаться, когда же ее лезвие случайным образом упадет вниз.

Но Ньютон при помощи простого набора уравнений сумел с большой точностью предсказать падение яблока, орбиту Луны, пути планет. Закон, который он открыл, был прост — и описывал колоссальное множество явлений. Этот закон показывал, что все предметы во Вселенной притягивают друг друга, и чем дальше они друг от друга находятся, тем слабее это притяжение, или гравитация.

Ньютон, однако, разобрался в этой истории не до конца. Лишь в 1916 году Альберт Эйнштейн, разработав общую теорию относительности, объяснил нам, в чём сущность силы тяжести.

Мы уже говорили, что каждая из этих сил очень похожа на игру с мячиком и ракетками. Если бы нам предложили выбрать конкретный вид спорта, мы бы сказали, что гравитация похожа на бадминтон. В неё играют на большом поле (в масштабах всей Вселенной), а удары делают совсем слабенькие. Легко представить себе, как в вас попадают воланчиком,— и согласитесь, что по сравнению с ударами разными другими спортивными штуковинами такая травма надолго не запоминается. Эта игра отлично подходит для начала спортивной карьеры, поскольку в неё могут играть не просто игроки любого возраста, а вообще кто угодно. Все частицы, и массивные, и наоборот, создают гравитационные поля и притягиваются друг к другу.

Электромагнетизм

В отличие от гравитации, которая всегда привлекает и притягивает, электромагнетизм может и притягивать, и отталкивать. Вы уже знаете, что частицы несут один из трех видов электрического заряда: положительный, отрицательный или нейтральный. Если два электрона оказываются бок о бок, они всегда отталкивают друг друга. Пара, в которой одна частица заряжена положительно, а другая — отрицательно, например протон и электрон, всегда притягивается друг к другу. Если обе частицы нейтральны, они ничего не делают.

Два электрона притягивают друг друга силой гравитации, но при этом отталкивают друг друга силой электромагнитного взаимодействия. В нас силен дух нездорового соперничества, примерно как в очереди, поэтому мы сразу зададим вопрос, который наверняка так и вертится у всех на языке: какая сила сильнее — сила тяжести или электромагнитная?

Побеждает электромагнитная — и не по пенальти, а всухую. Электромагнитная сила отталкивания между двумя электронами более чем в 1040 раз сильнее, чем гравитационное притяжение,— вот почему мы вправе позволить себе пренебречь гравитацией, когда говорим о размерах порядка атома и меньше.

Наверное, вы заметили, что мы говорим об «электромагнитной» силе, но пока что затронули лишь её «электрическую» часть. С точки зрения здравого смысла электричество и магнетизм — совсем разные вещи, но на фундаментальном уровне разница лишь в подходе. Неподвижные заряды создают электрическое поле, а подвижные — магнитное поле: вот как работает электромагнит. Подобным же образом изменение магнитного поля может создавать электрические поля — что, в свою очередь, создаёт электрический ток.

Поразительно, но факт: именно электромагнетизм объясняет практически все физические явления в повседневной жизни. Именно электрическое отталкивание не позволяет вашему седалищу продавить кресло. Именно электрическое притяжение скрепляет молекулы и служит основой для всех химических реакций. И — да, конечно, именно статическое электричество заставляет воздушный шарик прилипать к стенке.

А. как же магнетизм? Если не считать магнитных нашлепок на холодильнике, в повседневной жизни мы с ним вроде бы и не сталкиваемся. Зато он играет крайне важную роль в ускорителях частиц. Когда заряженная частица (например, протон) находится в магнитном поле, она движется по круглой орбите. Чем сильнее магнитное поле, тем быстрее движение по орбите. Если поставить в кольцо БАК набор магнитов, то можно будет ловить протонный луч на скорости, близкой к скорости света.

Электромагнетизм — это как теннис. Эта игра гораздо динамичнее многих других, а маленькие пушистенькие желто-зеленые мячики (фотоны) ударяют с такой силой, что только держись. Нейтральные частицы в эту игру не берут, потому что фотоны их «не видят» и потому что они, как всегда, забыли ракетку дома.

Играть в электромагнетизм могут любые заряженные частицы.

Сильное взаимодействие

Мы были вынуждены ознакомить вас с электромагнетизмом, поскольку существуют наблюдаемые феномены наподобие существования молекул и атомов, которые гравитацией не объяснишь. Однако гравитация и электромагнетизм, даже в сочетании, не в силах объяснить всего.

Рассмотрим гелий. Он состоит из двух нейтронов и двух протонов. Что касается электромагнетизма, нейтроны в этой игре не участвуют, а вот протоны крайне, крайне, крайне не любят общества друг друга. Только представьте себе — в ядре каждого атома гелия электрическая сила отталкивания между протонами составляет около 22,5 килограмма! Почему же гелий не разрывается в клочки под воздействием своего же электромагнитного отталкивания?

Значит, должна быть ещё одна сила, которая действует и на протоны, и на нейтроны и заставляет их держаться вместе. Эта сила называется сильным взаимодействием и действует лишь на очень-очень маленьких масштабах — около 10-15 метра. Чтобы вам не казалось, что мы жонглируем цифрами, ивы поняли, что это за масштаб, отметим, что размер атомного ядра по сравнению с вашим ростом — это всё равно что ваш рост по сравнению с расстоянием до альфы Центавра.

Однако кроличья нора на поверку оказывается ещё глубже. В 1960-х годах в ходе эксперимента по глубоко неупругому рассеянию в Стэнфордском линейном ускорителе учёные стреляли в атомы высокоэнергичными электронами. Получившийся рикошет показал, что внутри протонов и нейтронов есть что-то ещё — протоны и нейтроны нельзя считать фундаментальными частицами, они состоят из чего-то ещё более мелкого. Эти мелкие частички получили название кварков.

Кварки, как и электроны и нейтрино,— последние игроки в нашей метафизической игре. Существует шесть разновидностей кварков, но пока что нас интересуют только две: u-кварк (с электрическим зарядом в +2/3) и d-кварк (с электрическим зарядом в -1/3). В протонах содержится два u-кварка и d-кварк, а в нейтронах — два d-кварка и u-кварк. Скрепляет их сильное взаимодействие. На самом деле сильное взаимодействие настолько сильно, что вне протонов и нейтронов кварки не встречаются.

Сильное взаимодействие очень похоже на пинг-понг. Это напряженный поединок в небольшом замкнутом пространстве. В игры с сильным взаимодействием играют только кварки (и протоны с нейтронами, которые состоят из кварков).

Слабое взаимодействие

Когда мы знакомили вас с сильным взаимодействием, то заявили, что нам приходится это делать, потому что существуют загадочные явления, которые невозможно объяснить при помощи двух других сил (гравитации и электромагнетизма). Об одном таком мы уже говорили — это распад нейтрона. Мы сказали, что нейтрон, предоставленный сам себе, распадается на протон, электрон и антинейтрино. Попробуйте-ка объяснить это при помощи одной из сил, о которой мы уже говорили!

Придётся нам изобрести (ладно, хорошо, гипотетически выдвинуть) ещё одну силу. Задействовав все имеющиеся в нашем распоряжении творческие способности, мы титаническим усилием выдумываем слабое взаимодействие. Слабое взаимодействие характерно в основном для нейтрино, поскольку, раз они нейтральны, они уж точно не умеют играть в электромагнетизм, а в сильное взаимодействие играют только кварки. Как выяснилось, нейтрино и электроны очень похожи, за исключением небольших различий в заряде, и слабое взаимодействие, среди прочего, позволяет нейтрино превращаться в электроны и наоборот. Каждую секунду сквозь вас проходят триллионы нейтрино. Солнце производит их квадрильонами, и все же гигантские детекторы засекают лишь несколько нейтрино в день. Редкость — верный признак того, что слабое взаимодействие не зря получило такое название. А поскольку нейтрино взаимодействуют только посредством слабого взаимодействия, нам и не удаётся наблюдать их часто.

Слабое взаимодействие очень похоже на бросание тяжелого гимнастического мяча. Летит он очень недалеко, бьет несильно и за типичное время успевает неимоверно надоесть. Вообще-то нам уже намекнули, почему это так скучно. Гимнастический мяч очень тяжёлый, и даже атлеты-силачи легендарных времён не могли бросить его достаточно далеко. В слабое взаимодействие играют кварки, нейтрино и электроны. Поскольку, как мы уже сказали, их очень много и все лезут поучаствовать, игра идет очень медленно, и ничего особенно интересного не происходит.

Регулировки чтения: ↵ что это   ?  

Чтение голосом будет работать во всех современных Десктопных браузерах.

1.1
1.0

Поделиться в соцсетях: